2023年山东济南中考数学试卷及答案【热】
初中三年级的学生将面临初中入学考试,即高中入学考试。高中入学考试的科目是数学、数学、英语、物理、化学、政治、历史、生物、地理和体育。高中入学考试通常是各省的统一试卷。以下是小编整理的2023年山东济南中考数学试卷及答案,仅供参考,大家一起来看看吧。2023年山东济南中考数学试卷及答案
一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.
1. 下列几何体中,主视图是三角形的为( )
A. B.
C. D.
2. 2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为( )
A. B.
C. D.
3. 如图,一块直角三角板的直角顶点放在直尺的一边上.如果,那么的度数是( )
A. B. C. D.
4. 实数,在数轴上对应点的位置如图所示,则下列结论正确的是( )
A. B.
C. D.
5. 下图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
6. 下列运算正确的是( )
A. B.
C. D.
7. 已知点,,都在反比例函数的图象上,则,,的大小关系为( )
A. B.
C. D.
8. 从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为( )
A. B. C. D.
9. 如图,在中,,,以点为圆心,以为半径作弧交于点,再分别以,为圆心,以大于的长为半径作弧,两弧相交于点,作射线交于点,连接.以下结论不正确的是( )
A. B.
C. D.
10. 定义:在平面直角坐标系中,对于点,当点满足时,称点是点的“倍增点”,已知点,有下列结论:
①点,都是点的“倍增点”;
②若直线上的点A是点的“倍增点”,则点的坐标为;
③抛物线上存在两个点是点的“倍增点”;
④若点是点的“倍增点”,则的最小值是.
其中,正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.
11. 因式分解: =__________.
12. 围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则盒子中棋子的总个数是_________.
13. 关于的一元二次方程有实数根,则的值可以是_________(写出一个即可).
14. 如图,正五边形的边长为,以为圆心,以为半径作弧,则阴影部
分的面积为_________(结果保留).
15. 学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,和分别表示两人到小亮家的距离和时间的关系,则出发__________h后两人相遇.
16. 如图,将菱形纸片沿过点的直线折叠,使点落在射线上的点处,折痕交于点.若,,则的长等于__________.
三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.
17. 计算:.
18. 解不等式组:,并写出它的所有整数解.
19. 已知:如图,点为对角线的中点,过点的直线与,分别相交于点,.
求证:.
20. 图1是某越野车的侧面示意图,折线段表示车后盖,已知,,,该车的高度.如图2,打开后备箱,车后盖落在处,与水平面的夹角.
(1)求打开后备箱后,车后盖最高点到地面的距离;
(2)若小琳爸爸的身高为,他从打开的车后盖处经过,有没有碰头的危险?请说明理由.
(结果精确到,参考数据:,,,)
21. 2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:
A组:;B组:;C组:;D组:;E组:.
下面给出了部分信息:
a.B组的数据:12,13,15,16,17,17,18,20.
b.不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如下:
请根据以上信息完成下列问题:
(1)统计图中E组对应扇形的圆心角为____________度;
(2)请补全频数分布直方图;
(3)这30个地区“五一”假期出游人数的中位数是___________百万;
(4)各组“五一”假期的平均出游人数如下表:
组别 | A | B | C | D | E |
平均出游人数(百万) | 5.5 | 16 | 32.5 | 42 | 50 |
求这30个地区“五一”假期的平均出游人数.
22. 如图,,为的直径,为上一点,过点的切线与的延长线交于点,,点是的中点,弦,相交于点.
(1)求的度数;
(2)若,求直径的长.
23. 某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.
(1)求A型,B型机器人模型的单价分别是多少元?
(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?
24. 综合与实践
如图1,某兴趣小组计划开垦一个面积为的矩形地块种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为.
【问题提出】
小组同学提出这样一个问题:若,能否围出矩形地块?
【问题探究】
小颖尝试从“函数图象”的角度解决这个问题:
设为,为.由矩形地块面积为,得到,满足条件的可看成是反比例函数的图象在第一象限内点的坐标;木栏总长为,得到,满足条件的可看成一次函数的图象在第一象限内点的坐标,同时满足这两个条件的就可以看成两个函数图象交点的坐标.
如图2,反比例函数的图象与直线:的交点坐标为和_________,因此,木栏总长为时,能围出矩形地块,分别为:,;或___________m,__________m
(1)根据小颖的分析思路,完成上面的填空.
【类比探究】
(2)若,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由.
【问题延伸】
当木栏总长为时,小颖建立了一次函数.发现直线可以看成是直线通过平移得到的,在平移过程中,当过点时,直线与反比例函数的图象有唯一交点.
(3)请在图2中画出直线过点时的图象,并求出的值.
【拓展应用】
小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“与图象在第一象限内交点的存在问题”.
(4)若要围出满足条件的矩形地块,且和的长均不小于,请直接写出的取值范围.
25. 在平面直角坐标系中,正方形的顶点,在轴上,,.抛物线与轴交于点和点
(1)如图1,若抛物线过点,求抛物线的表达式和点的坐标;
(2)如图2,在(1)的条件下,连接,作直线,平移线段,使点的对应点落在直线上,点的对应点落在抛物线上,求点的坐标;
(3)若抛物线与正方形恰有两个交点,求的取值范围.
26. 在矩形中,,,点在边上,将射线绕点逆时针旋转90°,交延长线于点,以线段,为邻边作矩形.
图1 图2 图3
(1)如图1,连接,求的度数和的值;
(2)如图2,当点在射线上时,求线段的长;
(3)如图3,当的最小值
参考答案
一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.
【1题答案】
【答案】A
【2题答案】
【答案】B
【3题答案】
【答案】A
【4题答案】
【答案】D
【5题答案】
【答案】A
【6题答案】
【答案】D
【7题答案】
【答案】C
【8题答案】
【答案】B
【9题答案】
【答案】C
【10题答案】
【答案】C
二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.
【11题答案】
【答案】(x+4)(x-4)
【12题答案】
【答案】
【13题答案】
【答案】(答案不唯一)
【14题答案】
【答案】
【15题答案】
【答案】0.35
【16题答案】
【答案】
三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.
【17题答案】
【答案】
【18题答案】
【答案】,整数解为0,1,2
【19题答案】
【答案】详见解析
【20题答案】
【答案】(1)车后盖最高点到地面的距离为
(2)没有危险,详见解析
【21题答案】
【答案】(1)36 (2)详见解析
(3)15.5 (4)20百万
【22题答案】
【答案】(1)
(2)
【23题答案】
【答案】(1)A型编程机器人模型单价是500元,B型编程机器人模型单价是300元
(2)购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元
【24题答案】
【答案】(1);4;2;(2)不能围出,理由见解析;(3)图见解析,;(4)
【25题答案】
【答案】(1),;
(2);
(3)或
【26题答案】
【答案】(1),;
(2);
(3)